Summer 2017 Webinar Series
Performance Monitoring, Easy As Pi

Gonz Guzman (gonz@mcnc.org, 919-248-1842)
Lead Client Network Engineer

Sterling Brockwell (sbrockwell@mcnc.org, 919-248-4186)
Client Network Engineer

Webinar Links:
https://www.mcnc.org/events/training/cne-summer-webinars2017
Agenda

- Discuss differences in the Pi platforms
- Preparing the Pi
- Visualizing the data
- Deployment Options
Differences in the Pi Platform

- Not all Pi’s are created equally
 - Raspberry Pi 1 B+ – 100Mbps
 - 49Mbps Up, 94Mbps Down
 - Raspberry Pi 2 – 100Mbps
 - 94Mbps Up, 94Mbps Down
 - Raspberry Pi 3 – 100Mbps
 - 94Mbps Up, 94Mbps Down
 - Banana Pi Pro – 1Gbps
 - 700Mbps Up, 885Mbps Down
Differences in the Pi Platform

- We have wireless
 - Raspberry Pi 3
 - Raspberry Pi Zero W
 - Banana Pi Pro

- These utilize 802.11n at 2.4Ghz
 - Theoretical limit for 802.11n, 600Mbps 5Ghz and 300Mbps 2.4Ghz
 - Realistic throughputs are 300Mbps 5Ghz and 144Mbps 2.4Ghz
Prepare the Pi

- Use the latest Raspbian image

- Run installDB.py
 - Update OS
 - Install Influxdb and dependencies
 - Change timezone to EST
 - Change keyboard layout to US
 - Prompt password change
Prepare the Pi

- Run smartDB.py

 - On first run
 - Assist with database creation
 - Assist with adding websites for monitoring
 - Then start monitoring process

 - Any run after first
 - It will prompt you to use the existing database or create a new one
 - Monitor the previously entered websites, add to the list, or create a new list of sites to monitor
 - Start monitoring process
Secure the Pi - Example iptables rule set

- sudo iptables -A INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT
- sudo iptables -A INPUT -p icmp -j ACCEPT
- sudo iptables -A INPUT -i lo -j ACCEPT
- #SSH access
 - sudo iptables -A INPUT -p tcp -m tcp -s 10.100.0.0/16 --dport 22 -j ACCEPT
 - sudo iptables -A INPUT -p tcp -m tcp -s 10.101.0.0/16 --dport 22 -j ACCEPT
- #Grafana access for datasource
 - sudo iptables -A INPUT -p tcp -m tcp -s 10.100.0.0/16 --dport 8086 -j ACCEPT
 - sudo iptables -A INPUT -p tcp -m tcp -s 10.101.0.0/16 --dport 8086 -j ACCEPT
- #drop everything else
 - sudo iptables -A INPUT -p tcp --dport 1:8088 -j DROP
 - sudo iptables -A INPUT -p udp --dport 1:8088 -j DROP
 - sudo iptables -A INPUT -j REJECT --reject-with icmp-host-prohibited
 - sudo iptables -A FORWARD -j REJECT --reject-with icmp-host-prohibited
To secure the Pi with iptables

- Install iptable-persistent
 - `sudo apt-get install --y iptables-persistent`

Any changes to iptables will be saved with the following command.

- `sudo iptables-save`
Visualizing the data

- Install Grafana
 - Run installGrafana.py
 - Downloads and installs Grafana and dependencies

- Configure Grafana
 - Run smartGrafana.py
 - Prompts for ip address of pi
 - Prompts for database
 - Builds out dashboard
Visualizing the data - UI Example
Deployment Options

- MDF at each school and the core.

- In a problem class room to test wireless performance complaints.

- You could also utilize the Pi’s with Iperf, Curl via the command line or MTR, for deep dives into an issue.
Tool examples

Curl

- curl -L --output /dev/null --silent --show-error --write-out 'lookup: %{time_namelookup}
connect: %{time_connect}
appconnect: %{time_appconnect}
pretransfer: %{time_pretransfer}
redirect: %{time_redirect}
starttransfer: %{time_starttransfer}
total: %{time_total}
' 'google.com'

lookup: 0.005
connect: 0.013
appconnect: 0.000
pretransfer: 0.013
redirect: 0.069
starttransfer: 0.078
total: 0.148
Tool examples

MTR

- `mtr --report --report-cycle 10 www.google.com`

<table>
<thead>
<tr>
<th>Host</th>
<th>Loss%</th>
<th>Snt</th>
<th>Last</th>
<th>Avg</th>
<th>Best</th>
<th>Wrst</th>
<th>StDev</th>
</tr>
</thead>
<tbody>
<tr>
<td>128.109.178.2</td>
<td>0.0%</td>
<td>10</td>
<td>1.2</td>
<td>1.2</td>
<td>1.1</td>
<td>1.2</td>
<td>0.0</td>
</tr>
<tr>
<td>152.46.46.5</td>
<td>0.0%</td>
<td>10</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.2</td>
<td>0.0</td>
</tr>
<tr>
<td>128.109.246.41</td>
<td>0.0%</td>
<td>10</td>
<td>5.7</td>
<td>5.6</td>
<td>5.5</td>
<td>5.7</td>
<td>0.0</td>
</tr>
<tr>
<td>ws-a1a-ip-asr-gw-to-rlasr</td>
<td>0.0%</td>
<td>10</td>
<td>7.6</td>
<td>7.6</td>
<td>7.5</td>
<td>7.7</td>
<td>0.0</td>
</tr>
<tr>
<td>204.85.30.79</td>
<td>0.0%</td>
<td>10</td>
<td>7.1</td>
<td>7.1</td>
<td>7.1</td>
<td>7.2</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Tool examples

Iperf

Bandwidth limiting - 100Mb/sec

[Server] – iperf -s -i 1 -u

Transfer 1GB of data then stop - 1GB of data

[Server] – iperf -s -i 1

Bidirectional testing

[Server] – iperf -s -i 1
[Client] – iperf -c 10.101.101.101 -t 30 -d or -r

14 8/17/2017
Gonz Guzman (gonz@mcnc.org, 919-248-1842)
Lead Client Network Engineer

Sterling Brockwell (sbrockwell@mcnc.org, 919-248-4186)
Client Network Engineer

Webinar Links:
https://www.mcnc.org/events/training/cne-summer-webinars2017